AxisVM 1

Структурна анализа и дизајнерски софтверски програм

AxisVM – Structural Analysis Professional

Градежните инженери на 5 континенти го користат AxisVM за анализа на конструкциите со сигурност дека нивниот краен инженерски производ ќе ги исполни најсовремените инженерски анализи и барањата за дизајн. Софтвер за структурна анализа што е интуитивен и графички управуван е исклучително лесен за употреба и навистина лесен за започнување. Со линеарна, нелинеарна, извивање, вибрации, сеизмичка и динамичка анализа на носач, греда, ребро, мембрана, плоча и школка дво и тродимензионални конструкции. Анализи на спектарот на одговор, притисок и временска историја. Дизајн модули засновани на кодови за материјали од челик, бетон и дрво.

Заедно со еврокодот, некои национални стандарди што можат да се користат: SIA, NEN, DIN, NTC, STAS, MSZ. Достапни јазици: Англиски, Француски, Германски, Холандски, Чешки, Романски, Словачки, Унгарски, Шпански, Италијански, Српски, Полски, Бугарски, Португалски.

Зошто да го избереме AxisVM Structural Engineering софтверскиот програм ?

AxisVM 2
Јасен, интуитивен графички кориснички интерфејс

Интелигентен графички кориснички интерфејс го поддржува целиот период на процесот: дефиниција, анализа и пребарување на резултат. AxisVM нуди единствен кориснички интерфејс за извршување на моделирање, анализа, дизајн, детали до известување.

AxisVM 3
Напредни способности на анализа
Линеарна, нелинеарна, пластична статичка анализа. Линеарна, нелинеарна анализа на временска историја. Пресметка на формата на фреквенцијата и режимот. Анализа на Pushover. Неограничен број на равенки. Брз, паралелен решавач со повеќенаменски и парцијална технологија.
AxisVM 4
Различни проектни пресметки

Дизајнирање на модули за армирано-бетонски греди, столбови, плочи, sидови, подножја. Проверка на дизајнот на челик и оптимизација на пресекот. Дизајн на дрва со меко или тврдо дрво, со лепење на ламела и LVL материјали.

Детални проекти на AxisVM клиенти

axisvm_detailedprojects_04_1_london

Mapleton Crescent, Wandsworth
Лондон – Соединето Кралство

Проектант на конструкцијата: Barrett Mahony консултативни инженери

Датум: 2016 – 2017

„ Mapleton Crescent “ е станбена кула од 26 ката,површина од 86 единици, лоцирана во центарот на Wandsworth, London. Конструиран е за Pocket Living користејќи волуметриски единици надвор од локацијата и ќе биде еден од највисоките модуларни станбени блокови во Европа.

The facades feature three different kinds of green pleated ceramic panel. Highquality shared amenity spaces, rooftop gardens, shared balconies and a riverside terrace will help build a community and encourage social interaction in the scheme.

Mapleton project - model Mapleton project - concrete model

Sketch up model of proposed building / Concrete core after completion of slipform

Structural concept

The structural scheme consists of an insitu concrete frame up to level 2 with an insitu concrete core going up 26 floors. The remaining structure is formed using highly advanced prefabricated off site volumetric units supported by a 1.8m thick concrete transfer slab at Level 2.
On a site area of only 500m2 and bounded by the River Wandle, an electrical substation and a public road, the building construction is further complicated by a large surface water overflow sewer running under the site. The sender nature, eccentric core location and triangular shape of the building presented challenging dynamic design conditions. Wind tunnel testing was utilised during the design process to determine wind forces and floor accelerations.

Construction of pocket living units / Mapleton Crescent today

Analysis and Modelling with AxisVM software

•   AxixVM greatly aided the quick calculation of the structures natural frequencies, moments of inertia and modal shapes for use by the wind modelling specialists. The ability to define the floor slabs as semi rigid diaphragms allowed for increased accuracy of the modal shapes and frequencies.

•   Connections between the core walls and the module units were modelled as partially fixed beam elements free in the Z direction. This allowed for the transfer of shear and axial forces from the module diaphragm slabs into the core walls without transfer of any vertical loads. The clear graphical output of the forces in the core walls allowed for easy assessment of the vertical loads paths due to lateral loads.

•   The RC design module was used to design reinforcement in accordance with EC2 for the stability shear walls and RC slabs. Along the global structural model, a local model of the level 2 transfer slab was created with a more refined mesh in order to design the reinforcement.

•   AxisVM was also used to analyse the core stability in the temporary state during slipform construction and to assess its adequacy to support a tower crane to be installed on top at level 25 during the project.

axisvm_detailedprojects_05_1_yukon

Мостот на реката Горна Лиард
Канада – територии на Јукон

Проектант на конструкцијата : KGM Engineering

Датум: 2016

Мостот на реката Горна Лиард се наоѓа на автопатот Алјаска западно од езерото Вотсон, територии на Јукон. Мостот има 2 х 100 метри распони и е изграден во средината на 1900-тите.

The bridge spans over the Upper Liard River, which flows in a southerly direction at the bridge. The bridge is located almost exactly east-west alignment with the river orientated in the north-south direction. The bridge has 2 x 100m spans and it was built in mid 1900’s.

Our major task was – among other temporary engineering work – to jack the bridge at both abutments and piers. The center pier had to be post tensioned due to poor existing conditions. The post tension system remained permanently for further strengthening of the pier.

In addition to this, we had widened the pier to be able to distribute the total jacking forces of 3,600kN/side. Structural modification of the existing structure was required due to the fact the bridge was not designed for jacking/bearing replacement. Our estimated self-weight of the structure was confirmed within 5%.

The Upper Liard River Bridge Jacking 1The Upper Liard River Bridge Jacking 2

Model of the bridge

The Upper Liard River Bridge Jacking 3

Von-Mises stress – overall view of original structural elements / Bottom cover plate of diagonal member

The Upper Liard River Bridge Jacking 4

AxisVM_DetailedProjects_01_1_Reconstruction_Margit_bridge

Реконструкција на мостот Маргарет
Будимпешта – Унгарија

Инженер: Margit Híd Konzorcium
(Főmterv Zrt., MSc Kft., Pont-TERV Zrt., Céh Zrt.)

Датум: 2007 – 2011

Овој мост со повеќе растојанија, кој ги поврзува Буда и Пешта, е изграден во 1876 година врз основа на дизајнот на Ernest Gouin. Структурата на мостот е обновена во периодот од 2007 до 2011 година. Обновата на мостот е дизајнирана со употреба на софтверот AxisVM Structural Engineering.

Structure

The multi-span bridge (spans:74 – 83 – 88 – 88 – 83 – 74 m), links Buda and Pest was built in 1876 based on Ernest Gouin design. It was extended with another bridge linking to Margaret Island in 1900. The bridge except this extension bridge was destroyed in World War 2. Bridge was rebuilt using six main riveted steel arches with reinforced concrete deck each span. In the following 60 years bridge deteriorated, the slab has broken in many places therefore, reconstruction became necessary at the turn of the millennium.

Margaret bridge 4  Margaret bridge 1

Reconstruction

The old RC slab was replaced with a new orthotropic steel deck during reconstruction. More posts were installed between the main arches and the girders in accordance with the original design and braced with cross bracing.

Margaret bridge 3

Several building stages was checked during reconstruction works e.g. splitting of the bridge along to two (3-3 main arches in half-bridge), work stages and loading of the gantry crane or demolition stages of the RC deck.

Analysis and modelling

„ The largest spans of the bridges were modelled and analysed in AxisVM structural analysis & design software. The arches and the posts were modelled as beam elements, the main and cross girders were modelled as ribs and the deck was modelled with shell elements.

The forces between the main arches and the girders were modelled with link elements, the eccentric connections were modelled using rigid bodies. Along the global structural model we have created several smaller (local) models as well to check connections of cantilevered elements.”

Attila Vigh Ph.D.
Főmterv Zrt.

Margaret bridge 2   Margaret bridge 5 Margaret bridge 6 Margaret bridge 7

AxisVM DetailedProjects 02 1 Ramada Resort Aquaworld

Одморалиште Рамада – Воден парк
Будимпешта – Унгарија

Проектант на проектот: Dékettő Statikus Iroda Kft.

Главен проектант на централната дрвена купола: Trombitás és Zoltai Mérnökiroda Kft. Датум: 2006 – 2008 година

Водениот парк во Будимпешта е најголемиот воден парк во Централна Европа. Единствениот проект споредлив по големина и услуги е изграден во Амстердам. Вкупната цена на зградата беше околу 55.000.000 евра.

Ramada Resort 5 Ramada Resort 1

The central space of the water theme park is covered by a huge five stories high 72 m (236 feet) diameter dome covering 4200 square meters without internal supports. The spherical cap was built with a special construction technology on a glued laminated timber frame and covered with a transparent multilayer plastic film. Warm air streaming in two cells provides protection against harmful UV rays. The main beams are 24 m long bent and glued laminated wooden beams. The final design was made more economimical by replacing all trusses with wooden elements. All connections are hidden behind cover plates.

Ramada Resort 2 Ramada Resort 3

„ AxisVM link elements modeling semi-rigid connections were a great help in performing proper design calculations.”

Gyula Trombitás

AxisVM_DetailedProjects_03_1_Consoft

Benta Towers – станбени згради
Tg-Mures – Романија

Проектант : ConSoft PROIECT srl,

ARIS srl, ZPLAN srl

Датум : 2007 – 2008

Кулите Бента формираат импресивно комплексно живеалиште од четири згради со 15 и 20 ката. Комплексот има модерен трговски центар и подземен паркинг на две нивоа, распореден низ одморалиштето.

Starting from the two levels of underground parking and continuing with the aerial perspective offered by elevators that lead up to the spectacular panoramic terraces of the penthouses, blends harmoniously with the elevated style of the residence, the Benta Towers are designed to satisfy the most demanding requirements of comfort, quality and safety. It is an impressive residential complex compound of four 15 and 20 story buildings. The complex has a modern shopping center and underground parking on two levels, distributed throughout the resort.

 BENTA TOWERS 1

Structural concept

The residential complex consists of several buildings. The structure is composed of cast in place reinforced concrete frames with bracing walls. We will detail only the two 15 story structures, because the other buildings are not currently built.

BENTA TOWERS 3  BENTA TOWERS 2

Seismic analysis and design

For the reinforced concrete multistory flexible frame buildings, the intensity drift control governs the design. For this reason, the seismic analysis of buildings in seismic areas is extremely important.

Added value of the AxisVM software

„ AxisVM made our work a lot easier through the advanced seismic analysis capabilities of the software. The intuitive interface and commands helped us in the correct modeling of the structure by unifying the infrastructure with the superstructure in the same model. The following features made our work faster and more effective:

   The possibility to reduce the sectional characteristics of structural elements in different phases.

   Fast and effective seismic analysis by the spectral element method.

   Checking level relative displacement, through complex calculation that can take into account the accidental torsion of the structure.

   Among the many design modules of the AxisVM, we want to emphasize the concrete beam design module that can design the beams by taking into account the shear force calculated from plastic hinges. By this verification we can pass brittle or other undesirable failure mechanisms (eg.: shear failure of structural elements, failure of beam-column joints, yielding of foundations or any other element intended to remain elastic) shall be prevented by deriving the design action effects of selected regions from equilibrium conditions when plastic hinges with their possible overstrengths have been formed in their adjacent areas.”

Dipl. ing. Tőkés Károly

ConSoft Proiect srl

BENTA TOWERS 4

Download demo
Request offer